Меню

ARM процессор - мобильный процессор для смартфонов и планшетов. Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Железо

Здравствуйте наши любимые читатели. Сегодня мы расскажем вам про архитектуру процессора Cortex a53.

Вы даже и не подозреваете, как много ваших гаджетов работает благодаря этому процессору. Мало, кто знает об особенностях ядер техники и что отличает их друг от друга. В этой статье вы узнаете об особенностях конкретного популярного Cortex a53.

Характеристики

Данные процессоры могут иметь от 1 до 8 ядер, систему памяти типа L1 и общий кэш L2. Чтобы понимать, что отличает основную составляющую практически всей техники этой модели от других, нужно знать её преимущества:

  • Высокопроизводительность (поддержка широкого спектра мобильных приложений, DTV, аэрокосмических машин, хранилищ и прочей техники подобного образца);
  • Высококачественная архитектура Army8-A для автономных конструкций начального уровня;
  • Универсальность (может быть сопряжен с любыми процессорами, такими как Cortex-A72, Cortex-A57 и другие);
  • Качественный продукт с большим объёмом загрузки.

Это основные сильные стороны данного продукта, однако далеко не все его преимущества. Ядро этой марки выполняет множество функций:

  • Поддерживает до 64bit и архитектуры самых новых версий;
  • Технология безопасности TrustZone;
  • Расширения DSP и SIMD;
  • 8-ступенчатый конвейер с двумя выходами и улучшенным целым числом;
  • Может работать на частоте от 1,5 Ггц;
  • Поддержка виртуализации оборудования.

Это стандартный набор функций данной технической составляющей, однако это далеко не все функции, которые выполняет этот непростой механизм.

Где чаще всего используется

Процессоры данного типа встречаются не только в смартфонах среднего класса (Xiaomi redmi 4, Redmi 3s, Meizu m3/m5 Note и др.), а и в следующих технологиях:

  • Авиационно-космическая техника;
  • Сеть;
  • Хранилища данных (типа HDD, SDD);
  • Автомобильная информационно-развлекательная система;

Дополнительные возможности

  • Трубопровод, который отвечает за низкое энергопотребление;
  • Высокая пропускная способность, которая позволяет выполнять одновременно несколько команд;
  • Расширенные функции энергосбережения.

Процессор связан с разными IP

Данная техника используется в SoC, а также в технологиях типа Arm, графических IP, системных IP и физических IP. Мы предоставляем вам полный список инструментов, в которых может быть использован c ядром этой марки:

  • Mali-T860/Mali-T880;
  • Mali-DP550;
  • Mali-V550;
  • CoreLink;
  • Контролёр памяти;
  • Контролёр прерываний;
  • Студия разработки DS-5;
  • ARM компилятор;
  • Доски разработки;
  • Быстрые модели.

Существует 2 типа процессоров Cortex a53:

  • AArch64 – даёт возможность устанавливать и использовать 64-битные приложения;
  • AArch32 – даёт возможность использовать только существующие приложения Armv7-A.

Для чего вам нужна эта вся техническая информация

Если вы ничего не понимаете в технике и характеристиках, то более простыми словами Cortex a53 обеспечивает гораздо большую производительность нежели его предшественники с более высоким уровнем энергоэффективности. Производительность ядра даже выше, чем у марки Cortex-A7, которая стоит на многих популярных смартфонах.

Архитектура Armv8-A – это то, что определяет функциональность технологий. У данной марки ядра стоит 64-битная обработка данных, расширенная виртуальная адресация и 64-разрядные регистры общего назначения. Все эти функции сделали этот процессор первым, который был предназначен конкретно для обеспечения энергоэффективной 64-битной обработки.

Таким образом, вы поняли, что процессор Cortex a53 является именной той технической составляющей, которую не нужно пропускать, выбирая технику. Если в вашем смартфоне стоит такой процессор с использованием данной архитектуры, вам не нужно беспокоится о недостатке памяти или о быстрой разрядке телефона. Все эти проблемы в прошлом.

Мы надеемся, что наша статья была вам полезна. Если это так – подписывайтесь на наши группы в социальных сетях и следите за новыми статьями, которые также могут вам пригодиться. Не забывайте про наш канал на YouTube .

Как обеспечить постоянный рост производительности в рамках ограниченных по энергопотреблению устройств, каковыми являются смартфоны или планшеты? Можно создать более энергоэффективную микроархитектуру, но это возможно только до определённой степени. Можно перейти на более совершенный процесс производства, но и этот шаг сегодня уже не даёт прежних преимуществ. Раньше компании полагались на оба подхода, но сегодня этого уже недостаточно. Индустрия постепенно идёт по пути гетерогенных вычислений: размещения высокопроизводительных ядер рядом с маломощными, но энергоэффективными собратьями, и переключения между ними при необходимости.

NVIDIA недавно представила архитектуру процессора Tegra 3 (Kal-El) . Компания рассказала о том, что система на чипе имеет 5 вычислительных ядер Cortex-A9, но лишь 4 из них видимы для ОС. При запуске простых фоновых задач работает только одно энергоэффективное ядро Cortex A9, а высокопроизводительные находятся в отключённом состоянии. Как только системе потребуется производительность, задачи перенаправляются на мощные ядра, а энергоэффективное отключается.

Решение NVIDIA полагается на идентичные ядра, но использующие различные транзисторы (LP и G), однако подход не слишком отличается, если использовать к тому же различные архитектуры ядер. Когда NVIDIA разрабатывала свой чип, ARM не могла предложить подходящего энергоэффективного ядра, которое могло бы использоваться как само по себе, так и в качестве ядра-спутника в системе на чипе с Cortex A15. Теперь такое ядро есть, и оно получило имя Cortex A7.

Начиная с Cortex A9, ARM перешла на исполнение команд с изменением последовательности (инструкции могут быть переупорядочены для улучшенного параллелизма) — этот переход архитектура x86 совершила во времена Pentium Pro. Cortex A15 развивает эту тенденцию, расширяя при этом число исполняемых за такт инструкций. Cortex A7, напротив, является шагом назад: это ещё одно ядро, исполняющее команды в заданной последовательности и способное выполнить до двух инструкций одновременно. Описание напоминает Cortex A8, однако A7 отличается во многих областях.

Ядро A8 является очень старой разработкой — работы над дизайном начались ещё в далёком 2003 году. Хотя ARM предлагала легко синтезируемые версии ядра, для достижения более высоких частот со временем производителям пришлось использовать собственную дополнительную логику. Создание отдельного дизайна не только удлиняло время вывода решений на рынок, но и увеличивало затраты на разработку. В Cortex A7 остаётся полностью синтезируемым, но при этом предлагает хороший уровень производительности. ARM при разработке архитектуры учла последние процессы производства, добившись хорошего соотношения тактовых частот и производительности, а также пересмотрела архитектуру, дабы уменьшить время и стоимость вывода решений на рынок.

В ядре Cortex A7 применяется 8-ступенчатый конвейер, обрабатывающий по две инструкции за такт (впрочем, некоторые сложные инструкции A7, в отличие от A8 исполняет в режиме одну за такт). Блок целочисленных операций в A7 аналогичен A8, а вот математический сопроцессор имеет полностью конвейерную организацию и более компактен, хотя и несколько упрощён.

Некоторое упрощение архитектуры позволило существенно сократить размер ядра. ARM утверждает, что одно ядро Cortex A7 будет занимать всего 0,5 мм 2 при использовании 28-нм техпроцесса. При одном и том же процессе производства клиенты ARM смогут разместить ядро A7 на площади всего в 1/3—1/2 ядра Cortex A8. Стандартный дизайн ядер A9 по площади соответствует A8, тогда как площадь A15 больше, чем у обоих.

Несмотря на ограниченные возможности в выполнении сложных инструкций, ARM ожидает, что архитектура Cortex A7 обеспечит более высокую производительность по сравнению с Cortex A8. Это частично достигается благодаря усовершенствованному модулю предсказания ветвлений и уменьшенному конвейеру, сокращающему вероятность неправильного предсказания перехода. Cortex A7 отличается улучшенными алгоритмами выборки команд и более скоростной кеш-памятью L2, что также позволяет увеличить общую эффективность вычислений.

Впрочем, из-за некоторых ограничений в определённых задачах производительность Cortex A7 будет находиться на уровне с Cortex A8 или даже уступать последнему. Рейтинг ожидаемой производительность DMIPS/МГц для различных ядер ARM выглядит так:

  • ARM11 — 1,25 DMIPS/МГц;
  • ARM Cortex A7 — 1,9 DMIPS/МГц;
  • ARM Cortex A8 — 2 DMIPS/МГц;
  • ARM Cortex A9 — 2,5 DMIPS/МГц;
  • Qualcomm Scorpion — 2,1 DMIPS/МГц;
  • Qualcomm Krait — 3,3 DMIPS/МГц.

Важнее же всего то, что ядра Cortex A7 является на 100% ISA-совместимыми с Cortex A15, то есть поддерживают новые инструкции виртуализации и 40-битную адресацию памяти. В результате любой код, написанный для Cortex A15, может исполняться на Cortex A7, только медленнее. Это очень важная характеристика, которая позволяет производителям проектировать системы на чипе, оснащённые как ядрами Cortex A7, так и Cortex A15, переключаясь между ними в зависимости от задачи. ARM называет это конфигурацией big.LITTLE.

Архитектура Cortex A15 станет значительным шагом вперёд с точки зрения производительности архитектур ARM. Она нацелена на противостояние с чипами x86 начального уровня. Ядра Cortex A15 появятся в будущих смартфонах и планшетах, постепенно вытесняя Cortex A9 в решениях высокого класса. В сложных задачах Cortex A15, как ожидается, будут более энергоэффективными, чем A9.

Однако фоновые и простейшие задачи на смартфонах подчас не нуждаются в такой производительности, и их исполнение на мощном ядре A15 не очень эффективно с точки зрения потребления энергии. Здесь-то и выходит на первый план A7. Хотя Cortex A7 можно применять в качестве самостоятельных вычислительных ядер (и, конечно, они и будут так использоваться в дешёвых аппаратах), партнёры ARM могут интегрировать ядра Cortex A7 наряду с Cortex A15 в конфигурации big.LITTLE.

Так как A7 и A15 могут исполнять одни и те же инструкции, системы на чипе, оснащённые ядрами обеих архитектур, могут переключать задачи с энергоэффективных на высокопроизводительные, в зависимости от необходимости. Непротиворечивость содержания кешей обеспечивается связью CCI-400. ARM сообщает, что чип может переключаться между кластерами с различными ядрами за 20 миллисекунд.

Если всё будет работать так, как описывает ARM, такая архитектура окажется полностью прозрачной для ОС, как и в случае с Tegra 3, и не понадобится никаких программных оптимизаций для увеличения энергоэффективности. Впрочем, производители, как отмечает ARM, смогут ставить ОС в известность о реальном числе вычислительных ядер, если им будет необходим такой подход.

На базе Cortex A7 можно будет создавать процессоры, оснащённые от 1 до 4 таких ядер, как самостоятельных, так и в конфигурации с A15. ARM ожидает, что уже в начале следующего года выйдут первые 40-нм чипы, основанные на A7. Они будут применяться в дешёвых 2-ядерных смартфонах стоимостью до $100 и ещё более дешёвых одноядерных. Также в следующем году должны появиться и 28-нм чипы, объединяющие как ядра Cortex A7, так и A15 на едином кристалле.

Таким образом, Cortex A7 является отличной архитектурой, способной не только обеспечить гораздо более высокое соотношение производительности и цены по сравнению с A8, но и значительно увеличить время автономной работы смартфонов, как высокого класса, так и начального уровня. Эра неоднородных вычислений, как следующая фаза развития микропроцессоров, быстро приближается.

ARM Cortex-A7 MPCore - процессорное ядро для мобильных устройств, специально для бюджетного сектора рынка, разработанное ARM Holdings и реализующее архитектуру ARM v7. Было анонсировано в октябре 2011 года на ARM TechCon, кодовое имя разработки - Cortex-A7 «Kingfisher».
Основные задачи ядра: стать более быстрой, энергоэффективной, и меньшей по размеру заменой Cortex A8; использование в решениях архитектуры big.LITTLE, комбинирующей одно или несколько ядер Cortex A7 с одним или несколькими ядрами Cortex A15 в гетерогенной вычислительной системе. Для подобного использования ядро было создано полностью совместимым по архитектурным опциям с Cortex A15. Другими словами, ARM Cortex-A7 MPCore перенял некоторые особенности у модели процессора Cortex-A15 и может похвастаться высокими показателями энергоэффективности.
Частота центрального процессора от 0.6 до 3 ГГц, хотя максимальная частота для ARM Cortex-A7 установлена на значении 1.5 ГГц. Технология производства от 65 до 28 нм. Наборы инструкций ARMv7. Число ядер от 1 до 4 в кластере, до 2 кластеров на кристалл. Кэш-память первого уровня (L1): 8-64 Кбайт I, 8-64 Кбайт D и кэш-память второго уровня (L2): 0–1024 Кбайт (конфигурируется совместно с контроллером L2-кэша)

В этом материале пойдет речь о процессорной архитектуре . Полупроводниковые продукты на ее основе можно встретить в смартфонах, роутерах, планшетных ПК и прочих мобильных устройствах, где она до недавних пор занимала ведущие позиции в этом сегменте рынка. Сейчас же ее постепенно вытесняют более новые и свежие процессорные решения.

Краткая справка о компании ARM

История компании ARM началась в 1990 году, когда она была основана Робином Саксби. Основой же для ее создания стала новая микропроцессорная архитектура. Если до этого господствующие позиции на рынке ЦПУ занимала х86 или CISC , то после образования данной компании появилась достойная альтернатива в виде RISC. В первом случае выполнение программного кода сводилось к 4 этапам:

    Получение машинных инструкций.

    Выполнение преобразования микрокода.

    Получение микроинструкций.

    Поэтапное выполнение микроинструкций.

О сновная же идея архитектуры RIS С состояла в том, что обработку программного кода можно свести к 2 этапам:

    Получение RISC- инструкций.

    Обработка RISC- инструкций.

К ак в первом, так и во втором случае есть как плюсы, так и существенные недостатки. х86 успешно завоевала компьютерный рынок, а RISC ( в том числе и , представленная 2011 году) — рынок мобильных устройств.

История появления архитектуры Cortex A7. Ключевые особенности

В качестве основы для «Кортекс А7» выступала «Кортекс А8». Основная идея разработчиков в данном случае сводилась к тому, чтобы увеличить производительность и значительно улучшить энергоэффективность процессорного решения. Именно это в конечном итоге и получилось у инженеров компании ARM . Еще одной важной особенностью в данном случае стало то, что появилась возможность создавать ЦПУ с технологией big.LITTLE. То есть полупроводниковый кристалл мог включать 2 вычислительных модуля. Один из них был нацелен на решение наиболее простых задач с минимальным энергопотреблением и, как правило, в этой роли и выступали ядра «Кортекс А7». Второй же был предназначен для запуска наиболее сложного софта и базировался на вычислительных блоках «Кортекс А15» или «Кортекс А17». Официально «Кортекс А7» была представлена, как было отмечено ранее, в 2011 году. Ну а первый процессор ARM Cortex A7 увидел свет годом позже, то есть в 2012 году.

Технология производства

Изначально полупроводниковые продукты на основе А7 производились по технологическим нормам 65 нм. Сейчас эта технология безнадежно устарела. В дальнейшем были выпущены еще два поколения процессоров А7 по нормам допуска уже 40 нм и 32 нм. Но и они сейчас уже стали неактуальными. Наиболее свежие модели ЦПУ на основе этой архитектуры изготавливаются уже по нормам 28 нм, и именно их пока еще можно встретить в продаже. Дальнейший переход на более новые с новыми нормами допуска и устаревшей архитектурой ожидать вряд ли стоит. Чипы на базе А7 сейчас занимают наиболее бюджетный сегмент рынка мобильных устройств и их постепенно вытесняют уже гаджеты на основе А53, которая практически при той же энергоэффективности параметрах имеет более высокий уровень быстродействия.

Архитектура микропроцессорного ядра

1, 2, 4 или 8 ядер может входить в состав ЦПУ на базе ARM Cortex A7. Характеристики процессоров в последнем случае указывают на то, что в состав чипа входят, по существу, 2 кластера по 4 ядра. 2-3 года процессорные продукты начального уровня основывались на чипах с 1-им или 2-мя вычислительными модулями. Средний уровень занимали 4-ядерные решения. Ну а премиум-сегмент был за 8-ядерными чипами. Каждое микропроцессорное ядро на основе такой архитектуры включало следующие модули:

    Б лок обработки чисел с плавающей запятой (FPU).

    Кеш 1-го уровня.

    Блок NEON для оптимизации работы ЦПУ.

    Вычислительный модуль ARMv7.

Также были следующие общие компоненты для всех ядер в составе ЦПУ:

    Кеш L2.

    Блок управления ядрами CoreSight.

    Контроллер шины управления данными АМВА с разрядностью 128 бит.

Возможные частоты

Максимальное значение тактовой частоты для данной микропроцессорной архитектуры может изменяться от 600 МГц до 3 ГГц. Также необходимо отметить, что этот параметр, который указывает максимальное влияние на производительность вычислительной системы, изменяется. Причем на частоту оказывает влияние сразу три фактора:

    Уровень сложности решаемой задачи.

    Степень оптимизации программного обеспечения под многопоточность.

    Текущее значение температуры полупроводникового кристалла.

    В качестве примера рассмотрим алгоритм работы чипа МТ6582, который базируется на А7 и включает 4 вычислительных блока, частота которых изменяется от 600 МГц до 1,3 ГГц. В режиме простоя у этого процессорного устройства может находиться лишь только один блок вычислений, и он функционирует на минимально возможной частоте в 600 МГц. Аналогичная ситуация будет и в том случае, когда будет запущено простое приложение на мобильном гаджете. Но когда же в списке задач появиться ресурсоемкая игрушка с оптимизацией под многопоточность, то автоматически включатся в работу все 4 блока обработки программного кода на частоте 1,3 ГГц. По мере нагрева ЦПУ наиболее горячие ядра будут понижать значение частоты или даже отключаться. С одной стороны, такой подход обеспечивает энергоэффективнсть, а с другой — приемлемый уровень быстродействия чипа.

    Кеш-память

    Всего лишь 2 уровня кеша предусмотрено в ARM Cortex A7. Характеристики полупроводникового кристалла, в свою очередь, указывают на то, что первый уровень в обязательном порядке разделен на 2 равные половинки. Одна из них должна хранить данные, а другая — инструкции. Суммарный р азмер кеша на 1-ом уровне по спецификациям может быть равен 64 Кб. Как результат, получаем 32 Кб для данных и 32 Кб для кода. Кеш 2-го уровня в этом случае будет завис е ть от конкретной модели ЦПУ. Наименьший объем его может быть равен 0 Мб (то есть отсутствовать), а наибольший — 4 Мб.

    Контроллер оперативной памяти. Его особенности

    Встроенным контроллером оперативной памяти комплектуется любой процессор ARM Cortex A7. Характеристикитехнического плана указывают на то, что он ориентирован на работу в связке с ОЗУ стандарта LPDDR3. Рекомендованные частоты функционирования оперативной памяти в данном случае равны 1066 МГц или 1333 МГц. Максимальный же размер ОЗУ, который можно встретить на практике, для данной модели чипа равен 2 Гб.

    Интегрированная графика

    Как и положено, данные микропроцессорные устройства имеют интегрированную графическую подсистему. Компания-производитель ARM рекомендует использовать в сочетании с этим ЦПУ графическую карту собственной разработки Mali -400MP2 . Но ее производительности чаще всего недостаточно для того, чтобы раскрыть потенциал микропроцессорного устройства. Поэтому разработчики чипов применяют в сочетании с этим чипом более производительные адаптеры, например, Power VR6200.

    Программные особенности

    Три вида операционных систем нацелено на процессоры ARM:

      Android от поискового гиганта Google.

      iOS от APPLE.

      Windows Mobile от «Майкрософт».

    Все остальное системное программное обеспечение пока не получило большого распространения. Наибольшую долю на рынке такого софта, как не сложно догадаться, занимает именно Android. Эта система имеет простой и понятный интерфейс и устройства на ее основе начального уровня являются очень и очень доступными. До версии 4.4 включительно она была 32-битной, а с 5.0 стала поддерживать 64-разрядные вычисления. Эта ОС успешно функционирует на любом семействе ЦПУ архитектуры RISC , в том числе и ARM Cortex A7. Инженерное меню — это еще одна важная особенность данного системного софта. С ее помощью можно существенно перенастроить возможности ОС. Доступ же к этому меню можно получить с помощью кода, который для каждой модели ЦПУ индивидуален.

    Еще она важная особенность этой ОС — установка всех возможных обновлений автоматически. Поэтому даже новые возможности могут появиться на чипах семейства ARM Cortex A7. Прошивка их может добавить. Вторая система нацелена на мобильные гаджеты компании APPLE. Такие устройства в основном занимают премиум — сегмент и имеют соответствующие уровни быстродействия и стоимость. Последняя ОС в лице Windows Mobile пока не получила большого распространения. Устройства на ее основе есть в любом сегменте мобильны гаджетов, но вот малое количество прикладного софта в данном случае является сдерживающим фактором для ее распространения.

    Модели процессоров

    Наиболее доступными и наименее производительными в этом случае являются 1-ядерные чипы. Наибольшее распространение среди них получил МТ6571 от компании МедиаТек. На ступеньку выше находятся двухъядерные ЦПУ ARM Cortex A7 Dual Core. В качестве примера можно привести МТ6572 от все того же самого производителя. Еще больший уровень быстродействия обеспечивали Quad Core ARM Cortex A7. Наиболее популярным чипом из этого семейства является МТ6582, который сейчас даже можно встретить в мобильных гаджетах начального уровня. Ну а наибольший уровень быстродействия обеспечивали 8-ядерные центральные процессоры, к которым принадлежал МТ6595.

    Дальнейшие перспективы развития

    Пока еще можно встретить на прилавках магазинов мобильные устройства в основе которых лежит полупроводниковое процессорное устройство на базе 4X ARM Cortex A7. Это и МТ6580, МТ6582 и «Снапдрагон 200». Все эти чипы включают 4 вычислительных блока и имеют отменный уровень энергоэффективности. Также стоимость в этом случае очень и очень скромная. Но все же лучшие времена это микропроцессорной архитектуры уже позади. Пик продаж продукции на ее основе припал на 2013-2014 года, когда на рынке мобильных гаджетов у нее практически не было альтернативы. Причем в этом случае речь идет как о бюджетных устройствах с 1 или 2 вычислительными модулями, так и с флагманскими гаджетами с 8-ядерным ЦПУ. На текущий момент ее постепенно с рынка вытесняет «Кортекс А53», которая по существу является модифицированной 64-битной версией А7. При этом основные преимущества своей предшественницы она сохранила целиком и полностью, и будущее уж точно за ней.

    Мнение экспертов и пользователей. Реальные отзывы о чипах на базе данной архитектуры. Сильные и слабые стороны

    Безусловно, знаковым событием для мира мобильных устройств стало появление архитектуры микропроцессорных устройств ARM Cortex A7. Наилучшим доказательством этого стало то, что устройства на ее базе уже успешно продаются более 5 лет. Конечно, сейчас уже возможностей ЦПУ на основе А7 уже недостаточно даже для решения задач среднего уровня, но вот наиболее простой программный код на таких чипах и по сей день успешно функционирует. В перечень такого софта входит воспроизведение видео, прослушивание аудиозаписей, чтение книг, веб-серфинг и даже наиболее простые игрушки в этом случае запустятся без особых проблем. Именно на этом и акцентируют внимание на ведущих тематических порталах, посвященных мобильным гаджетам и девайсам как ведущие специалисты такого плана, так и обычные пользователи. Ключевой минус А7 — это отсутствие поддержки 64-битных вычислений. Ну а к основным плюсам ее можно отнести идеальное сочетание энергоэффективности и производительности.

    Итоги

    Безусловно, Cortex A7 — это целая эпоха в мире мобильных устройств. Именно с ее появлением мобильные устройства стали доступными и достаточно производительными. И один тот факт, что она уже более 5 лет успешно продается, лишнее тому подтверждение. Но если вначале гаджеты на ее базе занимали средний и премиум сегменты рынка, то сейчас за ними остался лишь бюджетный класс. Эта архитектура устарела и постепенно уходит в прошлое.

Подавляющее большинство современных гаджетов используют процессоры на архитектуре ARM, разработкой которой занимается одноимённая компания ARM Limited. Что интересно, компания сама не производит процессоры, а только лицензирует свои технологии для сторонних производителей чипов. Помимо этого, компания также разрабатывает процессорные ядра Cortex и графические ускорители Mali, которых мы обязательно коснёмся в этом материале.

Компания ARM, фактически, является монополистом в своей области, и подавляющее большинство современных смартфонов и планшетов на различных мобильных операционных системах используют процессоры именно на архитектуре ARM. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии, причём стоимость лицензий значительно разнится в зависимости от типа процессорных ядер (это могут быть как маломощные бюджетные решения, так и ультрасовременные четырёхъядерные и даже восьмиядерные чипы) и дополнительных компонентов. Годовой отчёт о прибыли ARM Limited за 2006 год показал выручку в 161 миллион долларов за лицензирование около 2,5 миллиардов процессоров (в 2011 году этот показатель составил уже 7,9 млрд), что означает примерно 0,067 долларов за один чип. Впрочем, по озвученной выше причине, это очень усреднённый показатель из-за разницы в ценах на различные лицензии, и с тех пор прибыль компании должна была вырасти многократно.

В настоящее время ARM-процессоры имеют очень широкое распространение. Чипы на этой архитектуре используются повсюду, вплоть до серверов, но чаще всего ARM можно встретить во встраиваемых и мобильных системах, начиная с контроллеров для жёстких дисков и заканчивая современными смартфонами, планшетами и прочими гаджетами.

ARM разрабатывает несколько семейств ядер, которые используются для различных задач. К примеру, процессоры, основанные на Cortex-Mx и Cortex-Rx (где “х” — цифра или число, обозначающее точный номер ядра) используются во встраиваемых системах и даже бытовых устройствах, к примеру, роутерах или принтерах.

Подробно на них мы останавливаться не будем, ведь нас, в первую очередь, интересует семейство Cortex-Ax — чипы с такими ядрами используются в наиболее производительных устройствах, в том числе смартфонах, планшетах и игровых консолях. ARM постоянно работает над новыми ядрами из линейки Cortex-Ax, но на момент написания этой статьи в смартфонах используются следующие из них:

Cortex-A5;
Cortex-A7;
Cortex-A8;
Cortex-A9;
Cortex-A12;
Cortex-A15;
Cortex-A53;

Чем больше цифра — тем выше производительность процессора и, соответственно, дороже класс устройств, в которых он используется. Впрочем, стоит отметить, что это правило соблюдается не всегда: к примеру, чипы на ядрах Cortex-A7 имеют большую производительность, нежели на Cortex-A8. Тем не менее, если процессоры на Cortex-A5 уже считаются чуть ли не устаревшими и почти не используются в современных устройствах, то CPU на Cortex-A15 можно найти во флагманских коммуникаторах и планшетах. Не так давно ARM официально объявила о разработке новых, более мощных и, одновременно, энергоэффективных ядер Cortex-A53 и Cortex-A57, которые будут объединены на одном чипе с применением технологии ARM big.LITTLE и поддерживать набор команд ARMv8 (“версию архитектуры”), но в настоящее время они не применяются в массовых потребительских устройствах. Большинство чипов с ядрами Cortex могут быть многоядерными, и в современных топовых смартфонах повсеместное распространение получили четырёхъядерные процессоры.

Крупные производители смартфонов и планшетов обычно используют процессоры известных чипмейкеров вроде Qualcomm или собственные решения, которые уже успели стать довольно популярными (к примеру, Samsung и её семейство чипсетов Exynos), но среди технических характеристик гаджетов большинства небольших компаний зачастую можно встретить описание вроде “процессор на Cortex-A7 с тактовой частотой 1 ГГц” или “двухъядерный Cortex-A7 с частотой 1 ГГц”, которое обычному пользователю ничего не скажет. Для того, чтобы разобраться, в чём заключаются отличия таких ядер между собой, остановимся на основных.

Cortex-A5

Ядро Cortex-A5 используются в недорогих процессорах для наиболее бюджетных устройств. Такие устройства предназначены только для выполнения ограниченного круга задач и запуска простых приложений, но совершенно не рассчитаны на ресурсоёмкие программы и, тем более, игры. В качестве примера гаджета с процессором на Cortex-A5 можно назвать Highscreen Blast, который получил чип Qualcomm Snapdragon S4 Play MSM8225, содержащий два ядра Cortex-A5 с тактовой частотой 1,2 ГГц.

Cortex-A7

Процессоры на Cortex-A7 являются более мощными, чем чипы Cortex-A5, а кроме того, больше распространены. Такие чипы выполняются по 28-нанометровому техпроцессу и имеют большой кэш второго уровня до 4 мегабайт. Ядра Cortex-A7 встречаются, преимущественно, в бюджетных смартфонах и недорогих устройствах среднего сегмента вроде iconBIT Mercury Quad, а также, в качестве исключения, в Samsung Galaxy S IV GT-i9500 с процессором Exynos 5 Octa — этот чипсет при выполнении нетребовательных задач использует энергосберегающий четырёхъядерный процессор на Cortex-A7.

Cortex-A8

Ядро Cortex-A8 не так распространено, как его “соседи”, Cortex-A7 и Cortex-A9, но всё же используется в различных гаджетах начального уровня. Рабочая тактовая частота чипов на Cortex-A8 может составлять от 600 МГц до 1 ГГц, но иногда производители разгоняют процессоры и до более высоких частот. Особенностью ядра Cortex-A8 является отсутствие поддержки многоядерных конфигураций (то есть, процессоры на этих ядрах могут быть только одноядерными), а выполняются они по 65-нанометровому техпроцессу, который уже считается устаревшим.

Сortex-A9

Ещё пару лет назад ядра Cortex-A9 считались топовым решением и использовались как в традиционных одноядерных, так и более мощных двухъядерных чипах, например Nvidia Tegra 2 и Texas Instruments OMAP4. В настоящее время процессоры на Cortex-A9, выполненные по 40-нанометровому техпроцессу не теряют популярность и используются во многих смартфонах среднего сегмента. Рабочая частота таких процессоров может составлять от 1 до 2 и более гигагерц, но обычно она ограничивается 1,2-1,5 ГГц.

Cortex-A12

В июне 2013 года компания ARM официально представила ядро Cortex-A12, которое выполняется по новому 28-нанометровому техпроцессу и призвано заменить ядра Cortex-A9 в смартфонах среднего сегмента. Разработчик обещает увеличение производительности на 40% по сравнению с Cortex-A9, а кроме того, ядра Cortex-A12 смогут участвовать в архитектуре ARM big.LITTLE в качестве производительных вместе с энергосберегающими Cortex-A7, что позволит производителям создавать недорогие восьмиядерные чипы. Правда,на момент написания статьи всё это только в планах, и массовое производство чипов на Cortex-A12 ещё не налажено, хотя компания RockChip уже объявила о своём намерении выпустить четырёхъядерный процессор на Cortex-A12 с частотой 1,8 ГГц.

Cortex-A15

На 2013 год ядро Cortex-A15 и его производные является топовым решением и используется в чипах флагманских коммуникаторах различных производителей. Среди новых процессоров, выполненных по 28-нм техпроцессу и основанных на Cortex-A15 — Samsung Exynos 5 Octa и Nvidia Tegra 4, а также это ядро нередко выступает платформой для модификаций других производителей. Например, последний процессор компании Apple A6X использует ядра Swift, которые являются модификацией Cortex-A15. Чипы на Cortex-A15 способны работать на частоте 1,5-2,5 ГГц, а поддержка множества стандартов сторонних компаний и возможность адресовать до 1 ТБ физической памяти делает возможным применение таких процессоров в компьютерах (как тут не вспомнить мини-компьютер размером с банковскую карту Raspberry Pi).

Cortex-A50 series

В первой половине 2013 года ARM представила новую линейку чипов, которая получила название Cortex-A50 series. Ядра этой линейки будут выполнены по новой версии архитектуры, ARMv8, и поддерживать новые наборы команд, а также станут 64-битными. Переход на новую разрядность потребует оптимизации мобильных операционных систем и приложений, но, разумеется, сохранится поддержка десятков тысяч 32-битных приложений. Первой на 64-битную архитектуру перешла компания Apple. Последние устройства компании, например, iPhone 5S, работают на именно таком ARM-процессоре Apple A7. Примечательно, что он не использует ядра Cortex – они заменены на собственные ядра производителя под названием Swift. Одна из очевидных причин необходимости перехода к 64-битным процессорам — поддержка более 4 ГБ оперативной памяти, а, кроме того, возможность оперировать при вычислении намного большими числами. Конечно, пока это актуально, в первую очередь, для серверов и ПК, но мы не удивимся, если через несколько лет на рынке появятся смартфоны и планшеты с таким объёмом ОЗУ. На сегодняшний день о планах по выпуску чипов на новой архитектуре и смартфонов с их использованием ничего не известно, но, вероятно, именно такие процессоры и получат флагманы в 2014 году, о чём уже заявила компания Samsung.

Cortex-A53

Открывает серию ядро Cortex-A53, которое будет прямым “наследником” Cortex-A9. Процессоры на Cortex-A53 заметно превосходят чипы на Cortex-A9 в производительности, но, при этом, сохраняется низкое энергопотребление. Такие процессоры могут быть использованы как по одиночке, так и в конфигурации ARM big.LITTLE, будучи объединенными на одном чипсете с процессором на Cortex-A57

Процессоры на Cortex-A57, которые будут выполнены по 20-нанометровому техпроцессу, должны стать самыми мощными ARM-процессорами в ближайшем будущем. Новое ядро значительно превосходит своего предшественника, Cortex-A15 по различным параметрам производительности (сравнение вы можете видеть выше), и, по словам ARM, которая всерьёз нацелена на рынок ПК, станет выгодным решением для обычных компьютеров (включая лэптопы), а не только мобильных устройств.

В качестве высокотехнологичного решения проблемы энергопотребления современных процессоров ARM предлагает технологию big.LITTLE, суть которой заключается в объединении на одном чипе ядер различных типов, как правило, одинакового количества энергосберегающих и высокопроизводительных.

Существует три схемы работы ядер различного типа на одном чипе: big.LITTLE (миграция между кластерами), big.LITTLE IKS (миграция между ядрами) и big.LITTLE MP (гетерогенный мультипроцессинг).

big.LITTLE (миграция между кластерами)

Первым чипсетом на архитектуре ARM big.LITTLE стал процесссор Samsung Exynos 5 Octa. В нём используется оригинальная схема big.LITTLE “4+4”, что означает объединение в два кластера (отсюда и название схемы) на одном кристалле четырёх высокопроизводительных ядер Cortex-A15 для ресурсоёмких приложений и игр и четырёх энергосберегающих ядер Cortex-A7 для повседневной работы с большинством программ, причём в один момент времени могут работать ядра только одного типа. Переключение между группами ядер происходит практически мгновенно и незаметно для пользователя в полностью автоматическом режиме.

Более сложная реализация архитектуры big.LITTLE — объединение нескольких реальных ядер (как правило двух) в одно виртуальное, управляемое ядром операционной системы, которое решает, какие задействовать ядра — энергоэффективные или производительные. Разумеется, виртуальных ядер также несколько — на иллюстрации приведен пример схемы IKS, где в каждом из четырёх виртуальных ядер находятся по одному ядру Cortex-A7 и Cortex-A15.

Схема big.LITTLE MP является наиболее “продвинутой” — в ней каждое ядро является независимым и может включаться ядром ОС по необходимости. Это значит, что если используются четыре ядра Cortex-A7 и столько же ядер Cortex-A15, в чипсете, построенном на архитектуре ARM big.LITTLE MP, смогут работать одновременно все 8 ядер, даже несмотря на то, что они разных типов. Одним из первых процессоров такого типа стал восьмиядерный чип компании , который может работать на тактовой частоте 2 ГГц, а также записывать и воспроизводить видео в разрешении UltraHD.

Будущее

По имеющейся на данный момент информации, в ближайшее время ARM совместно с другими компаниями планирует наладить выпуск big.LITTLE чипов следующего поколения, которые будут использовать новые ядра Cortex-A53 и Cortex-A57. Кроме того, бюджетные процессоры на ARM big.LITTLE собирается выпускать китайский производитель MediaTek, которые будут работать по схеме “2+2”, то есть, использовать две группы по два ядра.

Помимо процессоров, ARM также разрабатывает и графические ускорители семейства Mali. Подобно процессорам, графические ускорители характеризуются множеством параметров, например, уровнем сглаживания, интерфейсом шины, кэшем (сверхбыстрая память, используемая для повышения скорости работы) и количеством “графических ядер” (хотя, как мы писали в прошлой статье, этот показатель, несмотря на похожесть с термином, использующимся при описании CPU, практически не влияет на производительность при сравнении двух GPU).

Первым графическим ускорителем ARM стал ныне неиспользуемый Mali 55, который был использован в сенсорном телефоне LG Renoir (да-да, самом обычном сотовом телефоне). GPU не использовался в играх — только для отрисовки интерфейса, и обладал примитивными по нынешним меркам характеристиками, но именно он стал “родоначальником” серии Mali.

С тех пор прогресс шагнул далеко вперёд, и сейчас немалое значение имеют поддерживаемые API и игровые стандарты. К примеру, поддержка OpenGL ES 3.0 сейчас заявлена только в самых мощных процессорах вроде Qualcomm Snapdragon 600 и 800, а, если говорить о продукции ARM, то стандарт поддерживают такие ускорители, как Mali-T604 (именно он стал первым графическим процессором ARM, выполненным на новой микроархитектуре Midgard), Mali-T624, Mali-T628, Mali-T678 и некоторые другие близкие к ним по характеристикам чипы. Тот или иной GPU, как правило, тесно связан с ядром, но, тем не менее, указывается отдельно, а, значит, если вам важно качество графики в играх, то имеет смысл посмотреть на название ускорителя в спецификациях смартфона или планшета.

Есть у ARM в линейке и графические ускорители для смартфонов среднего сегмента, наиболее распространёнными среди которых являются Mali-400 MP и Mali-450 MP, которые отличаются от своих старших братьев сравнительно небольшой производительностью и ограниченным набором API и поддерживаемых стандартов. Несмотря на это, указанные GPU продолжают использоваться в новых смартфонах, к примеру, Zopo ZP998, который получил графический ускоритель Mali-450 MP4 (улучшенную модификацию Mali-450 MP) вдобавок к восьмиядерному процессору MTK6592.

Предположительно, в конце 2014 года должны появиться смартфоны с новейшими графическими ускорителями ARM: Mali-T720, Mali-T760 и Mali-T760 MP, которые были представлены в октябре 2013 года. Mali-T720 должен стать новым GPU для недорогих смартфонов и первым графическим процессором этого сегмента с поддержкой Open GL ES 3.0. Mali-T760, в свою очередь, станет одним из наиболее мощных мобильных графических ускорителей: по заявленным характеристикам, GPU имеет 16 вычислительных ядер и обладает поистине огромной вычислительной мощностью, 326 Гфлопс, но, в то же время, в четыре раза меньшим энергопотреблением, чем упомянутый выше Mali-T604.

Роль CPU и GPU от ARM на рынке

Несмотря на то, что компания ARM является автором и разработчиком одноимённой архитектуры, которая, повторимся, сейчас используется в подавляющем большинстве мобильных процессоров, её решения в виде ядер и графических ускорителей не пользуются популярностью у крупных производителей смартфонов. К примеру, справедливо считается, что флагманские коммуникаторы на Android OS должны иметь процессор Snapdragon с ядрами Krait и графический ускоритель Adreno от Qualcomm, чипсеты этой же компании используются в смартфонах на Windows Phone, а некоторые производители гаджетов, к примеру, Apple, разрабатывают собственные ядра. Почему же в настоящее время сложилась именно такая ситуация?

Возможно, часть причин может лежать глубже, но одна из них — отсутствие чёткого позиционирования CPU и GPU от ARM среди продуктов других компаний, вследствие чего разработки компании воспринимаются как базовые компоненты для использования в устройствах B-брендов, недорогих смартфонах и создания на их основе более зрелых решений. К примеру, компания Qualcomm почти на каждой своей презентации повторяет, что одной из её главных целей при создании новых процессоров является уменьшение энергопотребления, а её ядра Krait, будучи доработанными ядрами Cortex, стабильно показывают более высокие результаты по производительности. Аналогичное утверждение справедливо и для чипсетов Nvidia, которые ориентированы на игры, ну а что касается процессоров Exynos от Samsung и A-серии от Apple, то они имеют свой рынок за счёт установки в смартфоны этих же компаний.

Вышесказанное совершенно не значит, что разработки ARM значительно хуже процессоров и ядер сторонних компаний, но конкуренция на рынке в конечном итоге идет покупателям смартфонов только на пользу. Можно сказать, что ARM предлагает некие заготовки, приобретая лицензию на которые, производители могут уже самостоятельно их доработать.

Заключение

Микропроцессоры на архитектуре ARM успешно завоевали рынок мобильных устройств благодаря низкому энергопотреблению и сравнительно большой вычислительной мощности. Раньше с ARM конкурировали другие RISC-архитектуры, например, MIPS, но сейчас у неё остался только один серьёзный конкурент — компания Intel с архитектурой x86, которая, к слову, хотя и активно борется за свою долю рынка, пока не воспринимается ни потребителями, ни большинством производителей всерьёз, особенно при фактическом отсутствии флагманов на ней (Lenovo K900 сейчас уже не может конкурировать с последними топовыми смартфонами на ARM-процессорах).